MOHAWK SPECIFICATION SHEET

The following sample specifications are provided by Superior Boiler Works to assist you in providing your customer with the specific needs for that application. The sample specification is normally used as the base template for the boiler specification.

MODEL: Mohawk 30 - 1000 HP

1.0 Specification Overview

The boiler shall be a 3-pass Mohawk dryback boiler manufactured by Superior Boiler Works. Model No._________________. The boiler shall not have less than five square feet of A.S.M.E. heating surface, measured on the fireside, per rated boiler horsepower.

1.2 The boiler is to be mounted on a structural steel base with a forced draft burner and burner controls. The boiler is to be designed, constructed and tested in accordance with the latest edition and addenda of the A.S.M.E. Boiler and Pressure Vessel Code and shall be registered with the National Board of Boiler and Pressure Vessel Inspectors.
1.3 The boiler shall be designed for ________________ PSI steam with an operating pressure of ____________ in accordance with the latest edition and addenda of Section (I) or (IV), of the A.S.M.E. Boiler and Pressure Vessel Code.

1.4 The steam boiler shall be completely pre-assembled and fire tested at the factory to check construction, controls and combustion characteristics of the unit.

1.5 Boilers smaller than 300 HP are to be constructed to meet the requirements of CSD-1; boilers 300 HP and larger are to comply with the requirements of NFPA8501. The complete packaged boiler shall be listed as a unit by Underwriters Laboratories and shall bear the Underwriters label.

2.0 Structural Specification

2.1 The steam boiler is to be designed to produce a steam quality of 99% at all firing rates.

2.2 The furnace is to be located in the bottom third of the boiler to provide for maximum heat transfer while being in contact with the coolest boiler water.

2.3 All Section I boilers with 350 or more square feet of fireside heating surface are to have a furnace of the Morrison corrugated design and shall have a furnace volume of not less than __________ cubic feet.

2.4 All tubes are to have a minimum wall thickness of .105" and have an OD of 2 1/2". The hot end tubes (the entrance to first pass of tubes) on all boilers are to be seal welded after flare rolling and beading. The remaining tube ends on Section I are to be attached by flare rolling and then beading. Section IV boilers are to have the remaining tube ends attached by flare rolling.

2.5 The tubesheets on Section I boilers Model 4-625 and larger are to be a minimum
3/4 of an inch thick.

2.6 The boiler shall be mounted on a heavy structural steel base with extended runners on the front to provide burner support and protection.

2.7 The rear legs are to be slotted to provide for expansion when the boiler goes from a cold to a hot condition.

2.8 All heating surfaces must be fully accessible for inspection and cleaning without disturbing the burner equipment. All boilers with 350 or more square feet of heating surface are to have a 15" diameter rear access plug in the rear door. Boilers over 3750 square feet of heating surface are to have a 19" diameter rear access plug. The plug is to be gasketed and supplied with handles for ease or removal. The plug is also to be equipped with a Pyrex observation observation port and shutter assembly for the observation of the burner flame. The shutter assembly is to have a 1/8" tapping for the field connection of a manometer.

2.9 The rear turnaround area, tubesheets, and refractory are to be fully accessible when the rear door is opened. The rear turnaround area is to house the refractory blocks and bridge. The blocks and bridge are to be manufactured from a high quality castable insulating refractory equal to Plibrico LWI24. The rear door refractory is to be poured from the same material as the refractory blocks and is to be "one piece construction" with no baffles. The refractory is to be held in place with anchors welded to the refractory side of rear door.

2.10 The rear door is to be supported by an extra heavy-duty davit hinge that is capable of supporting the door when it is being opened or closed. The hinge is to be positioned so that the rear door will open to the (right) (left) when viewed from the burner end.

2.11 The front doors are to be insulated with a 1" think ceramic fiber blanket. The insulating blanket is to have a K-factory of .44 and is to be coated with a hardener to prevent erosion from the flue gases. Front doors on all boilers
with 350 square feet or more in heating surface are to be of the davit design.

2.12 All doors are to be held in place by lugs that are secured by replaceable brass nuts. The doors are to be sealed with a gas tight, non-proprietary ceramic fiber rope with a minimum density of 20 lbs. per cubic feet and a continuous use limit of 1800 F.

2.13 All necessary handholes and man holes shall be provided in accordance with the A.S.M.E. Code. Provide two additional handholes to improve the ease of waterside inspection and cleaning located in the front tubesheet near the bottom of the boiler on either side of the furnace.

2.14 The front and rear tubesheets must be fully accessible for inspections or cleaning when the front doors or rear door is open. Fuel lines, linkages, and electrical connections shall not impede opening of the doors.

2.15 All Section I boilers with a minimum of 250 square feet of fireside heating surface and all Section IV with a minimum of 625 square feet of fireside heating surface are to have a 12" x 16" manway located along the top centerline of the boiler to facilitate water side cleaning and inspection. The top of the burner furnace is to be visible when the manway cover is removed from boiler shell.

2.16 The boiler shell is to be insulated with two inch thick, eight pound per cubic foot density mineral wool with a k factor of .27. The insulation is to be held in place by bands and then covered with a 22 gauge phosphate coated galvanized steel jacket. All opening in the jacket are to have trim rings.

2.17 The entire boiler is to be painted with a high temperature, 400 degrees fahrenheit minimum, silicone based enamel. The front and rear doors are to be sand blasted before painting and the jacket is to be primed with a vinyl wash primer before painting.
3.1 The boiler is to have \((\text{qty}) \cdot \text{(size)}\) bottom blowdown connections.

3.2 Section IV boilers are to be supplied with one factory piped and installed slow opening blowdown/drain valve. Section I boilers are to be supplied with one factory piped and installed quick opening blowdown valve per boiler blowdown connection, and one slow opening valve per boiler. The piping is to be listed on the Manufacturer's Data Report Form.

3.3 The boiler is to be equipped with two lifting eyes.

3.4 Two \((\text{size})\) feedwater connections on the horizontal center line shall be provided, one on each side of the boiler. Each connection shall be furnished with an internal baffle.

3.5 One set of feedwater valves (one gate valve and one check valve) the same size as the boiler feedwater connection is to be factory piped and installed on one of the feedwater connections. The piping is to be documented on the Manufacturer's Data Report Form.

3.6 A \((\text{size})\) flue gas connection shall be located at the rear of the boiler on the top centerline. The stack shall be designed for easy attachment of the exhaust flue by allowing for a slip connection. The flue gas connection will be designed to support a minimum of 2,000 lbs. dead weight. The stack shall have a 1/2" connection for a stack thermometer.

3.7 A one-inch surface blowdown connection complete with a dip tube shall be provided.

3.8 One set of surface blowdown valves (a gate type shut-off valve and a calibrated flow control valve) are to be factory piped and installed on the boiler. The piping is to be documented on the Manufacturer's Data Report Form.

3.9 The steam connection will be a \((\text{size})\) class (300# Section I) (150# Section IV).
3.10 Boilers over 500 square feet or more of fireside heating surface are to be supplied with a low fire hold connection located in the bottom third of the shell.

4.0 **Boiler Trim**

4.1 A float type primary low water cut-off and pump control shall be provided with gage glass, ball check gage glass valves, try-cocks and a ball type water column blowdown valve.

4.2 A probe type secondary low water cut-off shall be provided.

4.3 A high limit control with manual reset shall be provided in addition to the operating control.

4.4 A firing rate controller if the burner is low-hi-low or modulating shall be provided.

4.5 Relief valves set at a minimum of 17% higher than the operating pressure of the boiler, but no higher than the boiler design pressure shall be provided.

4.6 A pressure gauge with an inspector's test cock shall be provided.

5.0 **Factory Firetest**

5.1 The factory firetest shall be a complete functional test conducted at 10 PSIG (Section IV) or 100 PSIG (Section I) and at a minimum, is to consist of filling the boiler with water and operating the burner throughout its complete range of operation. Additionally, all of the components wired into the boiler safety control circuit are to be tested by simulating a failure condition. A copy of the firetest report is to be included in the manual.

5.2 Upon completion of the factory firetest, the boiler shall be cooled and hydrostatically tested and the boiler external piping documented. The unit shall be ready for installation and final connection of water, steam, fuel, blowdown, electrical and flue.